Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1

نویسندگان

  • Bong Soo Park
  • Jong Tae Song
  • Hak Soo Seo
چکیده

Small ubiquitin-related modifier (SUMO) is a small polypeptide that modulates protein activity and regulates hormone signalling, abiotic and biotic responses in plants. Here we show that AtSIZ regulates nitrogen assimilation in Arabidopsis through its E3 SUMO ligase function. Dwarf plants of siz1-2 flower early, show abnormal seed development and have high salicylic acid content and enhanced resistance to bacterial pathogens. These mutant phenotypes are reverted to wild-type phenotypes by exogenous ammonium but not by nitrate, phosphate or potassium. Decreased nitrate reductase activity in siz1-2 plants resulted in low nitrogen concentrations, low nitric oxide production and high nitrate content in comparison with wild-type plants. The nitrate reductases, NIA1 and NIA2, are sumoylated by AtSIZ1, which dramatically increases their activity. Both sumoylated and non-sumoylated NIA1 and NIA2 can form dimers. Our results indicate that AtSIZ1 positively controls nitrogen assimilation by promoting sumoylation of NRs in Arabidopsis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Post‐translational modifications of Arabidopsis E3 SUMO ligase AtSIZ1 are controlled by environmental conditions

Sumoylation regulates numerous cellular functions in plants as well as in other eukaryotic systems. However, the regulatory mechanisms controlling E3 small ubiquitin-related modifier (SUMO) ligase are not well understood. Here, post-translational modification of the Arabidopsis E3 SUMO ligase AtSIZ1 was shown to be specifically controlled by abiotic stresses. AtSIZ1 ubiquitination was induced b...

متن کامل

COP1 Controls Abiotic Stress Responses by Modulating AtSIZ1 Function through Its E3 Ubiquitin Ligase Activity

Ubiquitination and sumoylation are essential post-translational modifications that regulate growth and development processes in plants, including control of hormone signaling mechanisms and responses to stress. This study showed that COP1 (Constitutive photomorphogenic 1) regulated the activity of Arabidopsis E3 SUMO (Small ubiquitin-related modifier) ligase AtSIZ1 through its E3 ubiquitin liga...

متن کامل

Arabidopsis SIZ1 positively regulates alternative respiratory bypass pathways.

Plant mitochondria possess alternative respiratory pathways mediated by the type II NAD(P)H dehydrogenases and alternative oxidases. Here, E3 SUMO ligase was shown to regulate alternative respiratory pathways and to participate in the maintenance of carbon and nitrogen balance in Arabidopsis. The transcript abundance of the type II NAD(P)H dehydrogenases NDA2 and NDB2 and alternative oxidases A...

متن کامل

Overexpression of the Rice SUMO E3 Ligase Gene OsSIZ1 in Cotton Enhances Drought and Heat Tolerance, and Substantially Improves Fiber Yields in the Field under Reduced Irrigation and Rainfed Conditions

The Arabidopsis SUMO E3 ligase gene AtSIZ1 plays important roles in plant response to abiotic stresses as loss of function in AtSIZ1 leads to increased sensitivity to drought, heat and salt stresses. Overexpression of the AtSIZ1 rice homolog, OsSIZ1, leads to increased heat and drought tolerance in bentgrass, suggesting that the function of the E3 ligase SIZ1 is highly conserved in plants and i...

متن کامل

FLC-mediated flowering repression is positively regulated by sumoylation

Flowering locus C (FLC), a floral repressor, is a critical factor for the transition from the vegetative to the reproductive phase. Here, the mechanisms regulating the activity and stability of the FLC protein were investigated. Bimolecular fluorescence complementation and in vitro pull-down analyses showed that FLC interacts with the E3 small ubiquitin-like modifier (SUMO) ligase AtSIZ1, sugge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2011